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Synaptic plasticity must be both competitive and stable if ongoing learning of the structure of neural inputs
is to occur. In this paper, a wide class of spike-timing-dependent plasticity �STDP� models is identified that
have both of these desirable properties in the case in which the input consists of subgroups of synapses that are
correlated within the subgroup through the occurrence of simultaneous input spikes. The process of synaptic
structure formation is studied, illustrating one particular class of these models. When the learning rate is small,
multiple alternative synaptic structures are possible given the same inputs, with the outcome depending on the
initial weight configuration. For large learning rates, the synaptic structure does not stabilize, resulting in
neurons without consistent response properties. For learning rates in between, a unique and stable synaptic
structure typically forms. When this synaptic structure exhibits a bimodal distribution, the neuron will respond
selectively to one or more of the subgroups. The robustness with which this selectivity develops during
learning is largely determined by the ratio of the subgroup correlation strength to the number of subgroups. The
fraction of potentiated subgroups is primarily determined by the balance between potentiation and depression.

DOI: 10.1103/PhysRevE.73.041911 PACS number�s�: 87.19.La, 87.18.Sn, 87.10.�e

I. INTRODUCTION

Learning in the brain is believed to involve the modifica-
tion of the synaptic connections between neurons so as to
either increase or decrease their strength in response to
stimuli. Two crucial aspects of this plasticity are competition
and stability. Competition occurs when the presence of a
stimulus results in some synapses being strengthened and
others weakened. It is important because it allows a neuron
to learn to respond selectively to only some stimuli by pro-
moting the formation of a stimulus-related synaptic structure
from an initially random configuration. However, such com-
petition requires an instability in the dynamics of the synap-
tic weights that must be reconciled with the need for those
weights to remain bounded and ultimately reach a stable con-
figuration.

One form of synaptic plasticity, called spike-timing-
dependent plasticity �STDP�, depends on the relative timing
of the pre- and post-synaptic action potentials �spikes� �1–5�.
A causal pre-before-post ordering results in synaptic
strengthening �potentiation�, whereas a post-before-pre or-
dering results in synaptic weakening �depression�. A number
of theoretical studies have investigated the issues of compe-
tition and/or stability in the context of STDP �6–10�. In the
most common model, potentiation and depression are inde-
pendent of synaptic strength �1,8,11–15�. This typically re-
sults in strong competition and globally unstable dynamics
so that hard upper and lower limits must be enforced to con-
tain the weights. While it is clear that natural limits exist in

the form of limited resources for the upper bound and zero
synaptic current for the lower bound, it is also possible that
the weights have a “soft” bound that arises from the synaptic
dynamics. Competition is so prevalent in the model with
weight-independent potentiation and depression that synaptic
structure will emerge even when there is no structure inher-
ent in the inputs �12�. On the other hand, models in which
the dependence of depression and/or potentiation is linear in
the weight typically result in distributions that are stable but
also unimodal due to the lack of competition �16,17�. Re-
cently, Gütig et al. �18� introduced a model with soft limits
that continuously interpolates between the additive and mul-
tiplicative models and permits both competition and stability,
which typically results in a bimodal distribution of weights.
This shows that by introducing weight dependence into the
learning dynamics, it is possible to bound the weights in a
graded fashion while retaining competition. This mechanism
for achieving competition and stability is plausible since
STDP has been observed experimentally to have a depen-
dence upon the weight �3�. Present experimental data are too
sparse and noisy to determine the analytical form of weight
dependence for the depression. Thus, as a guide to future
experiments, it seems useful to determine the essential fea-
tures of weight dependence in STDP that allow for both
competition and stability in synaptic dynamics.

In this paper, we introduce general criteria for the weight
dependence of potentiation and depression that are necessary
for a STDP model to exhibit both competition and stability.
This is done for the case in which the input consists of sub-
groups of synapses that are correlated within the subgroup
through the occurrence of simultaneous input spikes. Under
these circumstances, symmetry breaking may occur, in which
case all the synapses of one �or more� subgroup�s� become
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potentiated and the synapses of the remaining subgroups be-
come depressed. This simple synaptic structure results in the
neuron responding selectively with an elevated firing rate to
those subgroups with potentiated inputs. We describe how
the number of potentiated subgroups depends on the param-
eters describing both the inputs and the plasticity. We also
describe when and how robustly such synaptic structure
forms. All equations are given in terms of a general weight
dependence and illustrated with a case in which potentiation
is constant and depression has a cubic dependence on the
weights. This particular case typifies synaptic learning rules
that are both stable and competitive.

II. MODEL

A. Plasticity

We consider a single neuron receiving input on multiple
synapses. The strength of a synapse, i, is characterized by its
weight, wi �see the following subsection for its precise role�.
The spike-timing-dependent plasticity �STDP� is imple-
mented by making the following changes to the synaptic
weight, wi, when a synaptic input on the ith fiber arrives at
time tin and an output spike is generated at time tout �giving a
difference of �t= tout− tin�:

�w = ��f−�wi�T��t� if �t � 0,

�f+�wi�T��t� if �t � 0,
� �1�

where � is the learning rate, f+ and f− are functions describ-
ing the weight dependence of the plasticity, and the time
window function T��t� is defined as

T��t� = �− e�t/�− if �t � 0,

e−�t/�+ if �t � 0,
� �2�

and �+ and �− are, respectively, the potentiation and depres-
sion time constants. Bi and Poo �3� measured values of �+
=17±9 ms and �−=34±13 ms in cultured hippocampal neu-
rons. We further considered the case in which the time extent
of the input/output interactions is restricted so that each out-
put interacts only with its nearest synaptic inputs �in time�.
Consequently, each output spike in this model contributes a
potentiation component that arises by interaction with the
most recent input spike and a depression component by in-
teraction with the first subsequent input spike �i.e., if addi-
tional input spikes fall within the STDP time window of an
output spike, these interactions are neglected� �16,17�. The
input-output interactions included in this model are illus-
trated in Fig. 1,which shows that output spikes interact only
with the two input spikes that form the temporal limits of the
input interspike interval �ISI� in which they are generated.
The reasons for choosing this type of input-output restriction
are that it may be more biologically realistic �16,17,19� and
that it allows the calculation of the diffusion function
B�w , w̄� as explained in Appendix A.

B. Inputs

We consider a neuron with N excitatory synaptic inputs.
The firing times of any given input are described by a homo-

geneous Poisson process of rate �in, the same for all inputs.
Inputs are partitioned into M subgroups, such that the spike
times of inputs within a subgroup are correlated, but the
spike times of inputs from different subgroups are indepen-
dent. The within-group correlations are introduced so that,
for any input, a given portion of its spikes occurs at the same
time as some other spikes within its subgroup, while the
remainder occur at independent times. This is achieved by
selecting spikes for each input from two reference Poisson
spike trains each of rate �in �18�. The first train is for the
correlated events and is the same for all inputs in the sub-
group, but with independent trains for each subgroup. The
spikes are selected for the input from this train with prob-
ability �c, independent of the other neurons in its subgroup.
Thus only a portion of all the neurons in a subgroup partici-
pate in each correlated event. The second is the input’s own
independent train. The spikes are selected from this train
with probability 1−�c. The correlation coefficient is then
given by �18�

c =
cov„Xi�t�,Xj�t�…

�var„Xi�t�…var„Xj�t�…
, �3�

where the random variable Xi�t� is 1 if there is an input spike
at synapse i at time t and zero otherwise, and i and j are
synapses from the same subgroup.

C. Output

The spiking activity of the output neuron model is an
inhomogeneous Poisson process with the instantaneous rate
function �18�

FIG. 1. Schematic representing a typical interspike interval for a
synapse i. The input spikes define the interval’s beginning, at t=0,
and end, at t=Tin, as shown by the two vertical arrows below the
time line. Output spikes, as shown by vertical arrows above the
time line, may occur at times T0=�, due the input�s� at time t=0, or
at other times Tn, n�Z n�0, depending on the arrival of inputs on
other synapses �Sec. II B� and the probability of a consequent out-
put spike �Sec. II C�. Contributions to plasticity changes via Eq. �1�
occur only for interactions involving each output spike and the two
input spikes that define the interspike interval to which that output
belongs. Thus the output spikes at t=T0 , . . . ,Tk interact only with
the input spikes at t=0 and Tin, while the output spikes at T−1 and
Tk+1 interact with the previous and subsequent input intervals,
respectively.
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�out��wj	,t� =
1

N


j=1

N

wj�t�Sj
in�t − �� , �4�

where the sum is over all synapses j with input spike trains
Sj

in�t�=
k��t− tj
k� for spike times tj

k and the parameter � de-
notes a small constant delay in the output. This delay is much
smaller than the STDP time constant �+ �or �−� and so we
assume that e�/�+,− �1 throughout this work. The effect of
this prescription is that whenever a spike event arrives on a
subset I of synapses, an output spike occurs with probability
1
N
 j�Iwj at a time � later.

In this model, the post-synaptic excitation of the neuron is
mediated by a � function �see Eq. �4��. A related assumption
is that correlations in the inputs occur through the simulta-
neous arrival of spikes at different synapses. These two as-
sumptions mean that correlations are always “instantaneous”
in the model and have no finite duration. In real neurons this
is never the case, so the model used here should be consid-
ered an approximation to the case in which the time con-
stants governing synaptic correlations and post-synaptic po-
tentials are short compared to the plasticity time constants �±
and the neuron is acting primarily as a temporal coincidence
detector. This may apply in some cortical areas, especially
given the much smaller membrane time constant reported in
vivo compared to the passive value obtained from in vitro
studies �20,21�.

III. RESULTS

The evolution of the synaptic weights wi can be described
by a Langevin equation �22,23�

dwi�t�
dt

= A�wi,�wj	� + C�wi,�wj	�	�t� , �5�

where A�wi , �wj	� is the mean drift and C�wi , �wj	� describes
the magnitude of the stochastic fluctuations about this mean
as characterized by Gaussian white noise 	�t� with zero mean
and � function autocorrelation, �	�t�	�t��
=��t− t��. The drift
function may be calculated according to �22,23�

A�wi,�wj	� =� �d
wi�
wiQ�
wi�wi,�wj	� , �6�

where Q�
wi �wi , �wj	� is the conditional probability of
weight i changing by an amount 
wi as the result of STDP,
independent of STDP weight changes occurring at other
times and given the current weights wi and �wj	. As shown in
Appendix A, this leads to

A�wi,�wj	� =
��in

N ���+f+�wi� − �−f−�wi��

j=1

N

wj + f+�wi�

��1 − �+�c 

j�Gi

wj + �1 − �+��1 − c�f+�wi�wi� ,

�7�

where �±=�in / ��in+1/�±� and Gi is the subgroup to which
synapse i belongs. The first term in Eq. �7� is the contribution

from output spikes that are independent of synapse i’s input
spikes. It will typically be negative in the neighborhood of a
fixed point of the dynamics and thus represents the compe-
tition between synapses. The second and third terms are the
contributions from output spikes that are causally related to
synapse i’s input spikes and can be thought of as a “spike-
triggering effect.” They provide positive feedback to the syn-
apse weight and thus promote symmetry breaking among the
population of synapses. The first of these is the contribution
from correlations within the synapses’ subgroup, while the
second is the contribution from all the input spikes of syn-
apse i which are independent of the others in its subgroup.
Since N is typically very large in the cortex �N�104 syn-
apses per neuron� �24�, this latter term is very small and can
be neglected provided cN
 �1−c�M. �In the case of additive
potentiation and depression, this term can lead to symmetry
breaking even though it is very small if there is no structure
inherent in the input; this is not a problem for the choice of
f+ and f− used in this work.� The first of these terms repre-
sents symmetry breaking between subgroups and is typically
the dominant symmetry breaking term.

A. Small learning rates

In the limit of a very small learning rate, the fluctuations
in Eq. �5� can be ignored and the equilibrium weights, wi

*,
are well approximated by the zeros of the drift functions,

A�wi
*,w̄� = ��in���+f+�wi

*� − �−f−�wi
*��w̄

+
�1 − �+�c

M
f+�wi

*�ŵi� = 0, �8�

where the mean weight over a subgroup is ŵi
=M /N
 j�Gi

wj and the global mean weight is w̄
=1/N
 j=1

N wj. We will require that any symmetry breaking
occur between subgroups, not within them, a situation that
leads to the partitioning of subgroups into those that are po-
tentiated and those that are depressed. In this case, the sub-
group weight distribution is unimodal and the subgroup
mean is well approximated by its modal value: ŵi�wi

*. Then
for every synapse, i, the global mean weight w̄, which is
independent of i, can be expressed as a function of the equi-
librium weight

w̄ =
cwi

*

MF�wi
*�

for i = 1, . . . ,N , �9�

where F�w�= ��−f−�w�−�+f+�w�� / ��1−�+�f+�w��. For a
symmetry breaking solution, we require that Eq. �9� has mul-
tiple �nonidentical� stable solutions for some value of w̄ so
that wi

*�wj
* for some choices of i� j. We will also require

that solutions are positive and that the homogeneous solu-
tion, wi

*�w0� w̄ "i, exists and is unique. Uniqueness is
enough to guarantee that symmetry breaking only occurs be-
tween subgroups �see Appendix A�. �Conversely, if the ho-
mogeneous solution is not unique, examples can be found in
which symmetry breaking occurs within a subgroup.� Given
the preceding requirements, F�w� must have the following
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properties for smooth functions f+�w� and f−�w� on the do-
main, D, in which w is defined �see Appendix B�.

The conditions are as follows:
�i� F�w� always has a non-negative slope, i.e.,

F��w��0 "w�D.
�ii� F�0� is negative, i.e., F�0��0.
�iii� F�w� has an inflection point with positive third

derivative, i.e., $wf �D :F��wf�=0 and F��wf��0.
A simple example of a pair of functions �f+ , f−� satisfying

these criteria is

f+�w� = a ,

f−�w� = b + m�w − q�3 �10�

for m, q�0 and �+a−�−�b−mq3��0. A plot of the function
F�w� /w in Fig. 2 illustrates the range of values of c / �Mw̄�
for which there are multiple solutions to Eq. �9�, for a par-
ticular choice of the parameters a, b, m, q, and �in. We shall
typically use functions of the sort described in Eq. �10� to
give numerical examples throughout, but all equations and
arguments will be given in terms of the general weight de-
pendence. The parametrization in Eq. �10� is by no means
unique, it simply represents one realization that encapsulates
conditions �i�–�iii� above. Another pair of functions that sat-
isfies these conditions, but applies to weights that are explic-
itly restricted to lie in the interval w� �0,1�, is f+�w�
= �1−w�� and f−�w�=�w� for �� �0,1�, as proposed by
Gütig et al. �18�. All learning rules satisfying the criteria
�i�–�iii� behave in a way that is qualitatively similar to those
with the explicit cubic dependence for depression given in
Eq. �10�. The weight dependence given in Eq. �10� is con-

sistent with experimental data which, while noisy, show a
monotone increasing dependence on weight for depression
and weak or inverse dependence on weight for potentiation
�3�. �Note that this description of the absolute weight
changes is equivalent to the data given in Bi and Poo �3�,
which showed that the relative amount of depression is
roughly independent of the weight and the relative amount of
potentiation is roughly inversely related to the weight. See
also �16�.�

We shall assume that for any value of the mean weight w̄,
there are at most two modal solutions to Eq. �9� denoted by
w+ �for the potentiated weight� and w− �for the depressed
weight� �when the solution is unimodal we shall write
w+=w−=w0�. This is always the case for the choice of
(f+�w�, f−�w�) in Eq. �10�. This allows us to conceptualize
the solution of the M equations in Eq. �9� as a two-
dimensional problem. A first equation is obtained by elimi-
nating w̄,

w+F�w−� = w−F�w+� , �11�

which is independent of the input parameters c and M. A
second equation is found by making the small learning rate
approximation w̄�rw++ �1−r�w−, where r is the proportion
of potentiated synapses. r is an important measure of the
emergent synaptic structure since rM gives the number of
subgroups that the neuron responds to with an elevated spike
probability. The approximation gives

w− = −
rw+

1 − r
+

cw+

�1 − r�MF�w+�
, r = 0,

1

M
,

2

M
, . . . ,

M − 1

M
.

�12�

For each partition, �r ,1−r�, of the M subgroups into poten-
tiated and depressed synapses, there is a valid pair of Eqs.
�11� and �12� which must be simultaneously solved to find
the solution�s�. Consequently, there may be more than one
stable solution whenever symmetry breaking occurs as speci-
fied in conditions �i�–�iii� for f+ and f−.

This multiplicity of solutions is illustrated in Fig. 3 for the
case of M =3 subgroups and a correlation of c=0.5 and for
the same choice of parameters as used in Fig. 2. It shows the
solutions to the simultaneous pairs of Eqs. �11� and �12� as
points of intersection in the �w+ ,w−� plane. There are two
curves satisfying Eq. �11�. The first is the diagonal line cor-
responding to homogeneous, unimodal solutions and the sec-
ond is the diagonally symmetric ovoid shape corresponding
to symmetry breaking, bimodal solutions. This situation is
typical of functions f+ and f− that permit symmetry breaking
as specified in conditions �i�–�iii�. Also seen are two curves
corresponding to the solutions of Eq. �12� for r=1/3 and 2/3
�online in blue and green, respectively�. Locally stable solu-
tions correspond to points of intersection on the bold por-
tions of the curves, while unstable solutions correspond to
the points of intersection on the faint portions. In this ex-
ample, there are two distinct stable solutions: one bimodal
solution with r=1/3 and �w+ ,w−���0.74,0.23�, and a sec-
ond, unimodal solution with �w+ ,w−���0.30,0.30�. In gen-
eral, it is enough to restrict attention to the part of the graph
on or below the diagonal since a solution for a particular

FIG. 2. The function F�w� /w appearing in Eq. �9� is plotted to
show the range over which there are multiple stable solutions to this
equation as required for symmetry breaking. Stable portions of the
curve have negative slope �bold line� while unstable portions have
positive slope �faint line�. Thus stable bimodal solutions have their
depressed synapses between w−

min and w−
max, while their potentiated

synapses are between w+
min and w+

max. The choice of f+�w� and f−�w�
for F�w� is the cubic set given in Eq. �10� with parameters a=1.0,
b=0.92, m=3.0, q=0.5, �+=17 ms, �−=34 ms, and �in=100 Hz.
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value of r in this part will have a symmetric solution with
1−r in the upper part, and we are interested in solutions with
w+�w− �by definition�. This can be seen here with the bi-
modal r=1/3 and r=2/3 solutions. The r=0 curve from Eq.
�12� is redundant and is omitted from Fig. 3. This is because
it always gives just the unimodal solution that can otherwise
be found as the common point of intersection of curves with
0�r�1 and the diagonal line. This is seen in Fig. 3 for the
r=1/3 and r=2/3 curves, and the diagonal, which all inter-
sect at the unimodal solution �w+ ,w−���0.30,0.30�. For uni-
modal solutions, we will adopt the convention that r=0 im-
plies that all synapses are depressed, i.e., wi

*�q "i, while
r=1 implies that all synapses are potentiated i.e. wi

*�q "i.
Thus the unimodal solution in this example has a ratio of
r=0. Multiple stable solutions are commonplace for func-
tions f+ and f− satisfying conditions �i�–�iii�. Figure 4 pro-
vides a second example, but using the plasticity rule of Gütig
et al. �18�.

With different choices of parameters, other solution sets
arise. Focusing on the plasticity parameters a, b, m, and q,
we note from Eq. �8� that a can be set to 1 by absorbing it as
an overall factor into the learning rate �, and that q deter-
mines an arbitrary scale for the weights, which we will set to
q=0.5 throughout. The effect of the two remaining param-
eters, b and m, on the solution set can be shown in a bifur-
cation diagram, as illustrated in Fig. 5�a�, again for input
parameters M =3, c=0.5, and �in=100 Hz. First, the straight
lines forming the upper and lower borders in the figure cor-
respond to the constraints that F�0��0 and f−�0��0, respec-
tively. Next, the number of solutions for any choice of �b ,m�
is shown in gray scale, and ranges from one �lightest� to
three �darkest�. The lines delineating the borders between

these regions are marked by color �online� and text indicat-
ing the ratio r=0,1 /3 ,2 /3, or 1 of the solution that changes
existence at the border. For example, the blue �“1

3”� line on
the right of the diagram marks the transition from the exis-
tence of the r=1/3 stable solution, on the left of the line, to
its nonexistence, on the right of the line. The transition is
accompanied by the appropriate change in gray tone. A sec-
ond �blue, “1

3”� r=1/3 line can be seen in the left of the
diagram, marking the opposite transition �so that the r=1/3
stable solution exists between these two lines�. The same
situation occurs for the r=2/3 solution �green, “2

3”�. The
r=0 and r=1 �unimodal� solutions are slightly different, in
that they each have only one line, and the r=0 solution is
stable to the right of its line �white, “0”�, while the r=1
solution is stable to left of its line �black, “1”�. In between
these lines there is no stable unimodal solution—the opposite
pattern to the bimodal r values.

Representative plots, similar to Fig. 3, illustrating the so-
lution sets for the various qualitatively distinct regions of
Fig. 5�a�, are shown in Figs. 5�b�–5�g�, following a trajectory
of increasing b for fixed m=3.0 �see labels �b�–�g� in Fig.
5�a��. b is a measure of the strength of depressing contribu-
tions to the weight relative to potentiation, and this is re-
flected in the change in the solution sets observed as b in-
creases. For the weakest level of depression, b=0.83, only
the r=1 solution exists, corresponding to all synapses being
potentiated �Fig. 5�b��. When b=0.875, the bimodal r=2/3
solution is added to the unimodal r=1 solution, leading to a
bistable system �Fig. 5�c��. The system becomes tristable
with a further increase in b to 0.885, with the r=1/3, 2 /3,
and 1 solutions all being stable �Fig. 5�d��. The r=1 solution
loses stability when b=0.9, leaving the two symmetry break-
ing solutions r=1/3 and 2/3 �Fig. 5�e��. Another increase in
b to 0.92 results in the r=0 depressed, unimodal solution
gaining stability and disappearance of the r=2/3 bimodal

FIG. 3. �Color online� The solutions to the pairs of Eqs. �11� and
�12� as points of intersection of curves in the �w+ ,w−� plane for
M =3 subgroups and a correlation c=0.5 �other parameters as in
Fig. 2�. The diagonal line and the ovoid curve correspond to solu-
tions to Eq. �11�, while the two other curves correspond to the
solutions to Eq. �12� for r=1/3 �blue� and r=2/3 �green� as
marked. Portions of the curves corresponding to stable solutions for
Eq. �11� are shown in bold.

FIG. 4. �Color online� The solutions to the pairs of Eqs. �11� and
�12� similar to Fig. 3 but using the plasticity rule of Gütig et al.
�18�. Note that multiple stable solutions for different values of r
also occur using this rule. Parameters are M =6, c=1, �=0.875,
�=0.03, and �in=100 Hz.
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distribution �Fig. 5�f��. Finally by b=0.98 the remaining
r=1/3 bimodal distribution has also disappeared leaving
only the r=0 solution with all synapses depressed �Fig. 5�g��.
This example shows that the relative strength of depression,
b, compared to potentiation is an important parameter in de-
termining the number of subgroups that a neuron learns to
respond selectively to, as measured by r. However, since
there are often multiple solutions with different values of r,
there can be ambiguity about the value of r that will emerge
from the learning process for these low rates of learning.
These observations apply in general to STDP rules that are
both stable and competitive as specified in conditions �i�–�iii�
at the beginning of this subsection.

B. Intermediate and large learning rates

The existence of multiple, stable solutions described
above holds only for sufficiently small learning rates, �. As
� increases, so too do the noisy fluctuations of weights about
their modal values. For intermediate values of �, this can
lead to trajectories in weight space that stray outside of the
basin of attraction of a fixed point and into the basin of an
adjacent fixed point, wherein it may be captured. As � in-
creases, this occurs with increasing frequency so that such
solutions become essentially unstable on any reasonable time
scale over which learning occurs. At high values of �, the
fluctuations become so large that transitions back and forth
between the fixed points can occur so frequently that no syn-
apse remains permanently potentiated or depressed. These
arguments apply in general to functions f+ and f− that exhibit
multiple stable solutions at low learning rates as is typical
whenever they satisfy conditions �i�–�iii� given in Sec. III A.

This effect of learning rate is illustrated in Fig. 6 for the
bistable system shown in Fig. 3, with M =3 and stable solu-
tions corresponding to ratios of r=0 and r=1/3. Figure 6�a�
shows the results of simulations in which all N=120 weights

�i.e., 40 in each subgroup� were initially at the r=0 fixed
point ��w+ ,w−���0.30.0.30��. The plot shows the probability
density, P�w�, combined across all 120 synapses of the neu-
ron in gray scale as a function of � between 3�10−4 and
3�10−2. For the smallest values of �, the r=0 unimodal
solution is stable as indicated by the single dark streak

FIG. 5. �Color online� Role of the parameters
b and m (that determine the relative strength of
synaptic depression compared to potentiation �see
Eq. �10��) as shown by a �b ,m� bifurcation dia-
gram, �a�, and six explicit solution sets in the
�w+ ,w−� plane �as in Fig. 3� for particular choices
of b �as marked� and m=3.0; �b�–�g� �other pa-
rameters as in Fig. 3�. In the bifurcation diagram,
�a�, the number of distinct solutions in a region of
�b ,m� parameter space is given by the degree of
gray shade, with the lightest corresponding to one
solution and the darkest corresponding to three
solutions. Borders between these regions are de-
lineated by lines that are marked by the value of
the ratio r=0 �white�, 1 /3 �blue�, 2 /3 �green�, or
1 �black� of the solution that loses stability or
existence at this border �thus the solution is stable
and exists on the darker side of the line�. The
schema for �b�–�g� are the same as for Fig. 3.

FIG. 6. �Color online� The effect of the learning rate, �, on the
stability of the two solutions found to be stable for small � in Fig.
3 �with M =3 subgroups�. Simulations were run in which all the
weights were initially set according to either �i� the unimodal solu-
tion ��a�–�d�� or �ii� the bimodal solution ��e�–�g��. �a� and �e� The
probability density, P�w�, combined across all synapses of the neu-
ron is given in gray scale as a function of � between 3�10−4 and
3�10−2 for the unimodal and bimodal initial conditions, respec-
tively. �b�–�d� and �f�–�h� show the time evolution of the weights of
the three synaptic subgroups �in different shades/colors� for small,
intermediate, and large values of the learning rate ��=3�10−4 ,
3�10−3, or 3�10−2 s−1, respectively�.
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around w=0.30 at these small � values �i.e., there are no
streaks for any other values of w for small ��. This can also
be seen in Fig. 6�b�, which shows the evolution of all 120
weights when �=3�10−4 as a function of time, with
weights belonging to different subgroups shown in different
shades �colors, online�. It is evident that all weights begin
and remain around the r=0 solution of w0�0.30. However,
for intermediate and large values of �, this solution becomes
unstable as seen by gradual fading out of the initial w
�0.30 dark streak in Fig. 6�a� and the simultaneous emer-
gence of the two streaks at w�0.74 and 0.23 corresponding
to the r=1/3 bimodal solution. This can also be seen in Fig.
6�c�, which is similar to Fig. 6�b� but with �=3.0�10−3, and
shows that although all the weights began at w=0.30, the
weights of one subgroup rapidly became potentiated while
the others were slightly depressed as expected for the r
=1/3 solution. For this intermediate value of �, once a par-
ticular subgroup becomes potentiated and the others are de-
pressed, they remain so. This is not the case for large values
of �. The fluctuations become so large that subgroups can
often change whether they are potentiated or depressed, as
seen in Fig. 6�d�, which shows a transposition in which two
subgroups simultaneously swap their potentiated and de-
pressed status. In contrast, if the weights are initiated to con-

form with the r=1/3 solution, they always remain faithful to
this solution as seen in Figs. 6�e�–6�h� �although subgroups
can switch back and forth between modes in Fig. 6�h��.

It is useful to have analytical techniques for investigating
the formation of synaptic structure when � is not small, since
numerical simulations are computationally intensive and
�possibly prohibitively� time consuming. An analysis is pos-
sible in the large � limit using a one-dimensional Fokker-
Planck equation. It requires that r may be treated as a con-
tinuous parameter, which is a reasonable approximation in
the large � limit in which weights constantly make transi-
tions back and forth between modes. The approximation is
best when the correlations in weight changes between sub-
groups are weak, which is generally the case but improves as
M becomes larger. As usual, we assume that the subgroup
mean can be approximated by the weight of any one of its
members. The Fokker-Planck equation is given by �22,23�

�P�w,w̄�
�t

= −
�

�w
�A�w,w̄�P�w,w̄�� +

1

2

�2

�w2 �B�w,w̄�P�w,w̄�� ,

�13�

where A�w , w̄� is given by Eq. �8� and

B�w,w̄� =� �d
w�
w2Q�
w�w,w̄� �14�

=�2�i��1 + 2�1,0�w̄ −
c

M
w��� c

M
w + �2,0�w̄ −

c

M
w�� f+

2�w� − 2�1 + ��0,0 + �1,1��w̄ −
c

M
w��

���0,1
c

M
w + �1,0�0,1�w̄ −

c

M
w�� f+�w�f−�w� + �1 + 2�0,1�w̄ −

c

M
w����0,2

c

M
w + �0,2�w̄ −

c

M
w�� f−

2�w�� , �15�

where ��,�=�in / ��in+� /�++� /�−�. The derivation for
B�w , w̄� is given in Appendix A. With the free boundary
conditions that apply here, the stationary solution is given by

P�w,w̄� =
N

B�w,w̄�
exp���w,w̄�� , �16�

where N is the normalization factor and

��w,w̄� = �w

dw�2A�w�,w̄�/B�w�,w̄� . �17�

The mean weight, w̄, can be calculated self-consistently by
solving the equation

w̄ = �
0

�

dw�w�P�w�,w̄� . �18�

In practice, this is computationally expensive since three nu-
merical integrals must be performed for each evaluation of
the right-hand side of Eq. �18�, so it is faster to approximate

P�w , w̄� as the sum of Gaussian distributions centered on the
modes w+ and w− as described in Appendix C. This is often
highly accurate and at minimum gives a good initial approxi-
mation from which to find the self-consistent w̄ from the full
theory. We emphasize that this approach applies to any
choices of the functions f+�w� and f−�w� describing the
weight dependence of STDP.

Typically Eq. �18� yields a unique solution for w̄, indicat-
ing that the multistable solutions encountered for small val-
ues of � are absent in the large � limit, in agreement with
simulations. It is also interesting to know the fraction of
potentiated synapses, r. This can be calculated by substitut-
ing the self-consistent value for w̄ into Eq. �16� and integrat-
ing, r=�q

�P�w , w̄�, or by using a Gaussian approximation as
given in Appendix C �Eq. �C3��. In Fig. 7�a�, r has been
calculated in the latter fashion and shown in gray scale in the
�b ,m� plane for the M =3, c=0.5 example that was consid-
ered in Fig. 5�a� in the small � limit. In contrast to the small
� limit shown in Fig. 5�a�, for large � there is only one
solution for each �b ,m� pair in Fig. 7�a� as indicated by the

LEARNING THE STRUCTURE OF CORRELATED¼ PHYSICAL REVIEW E 73, 041911 �2006�

041911-7



unique gray tone specifying the value of r �see adjacent color
bar�. Two solid lines mark the boundaries between qualita-
tively distinct regions of the �b ,m� plane. On the left of Fig.
7�a� a white line indicates the transition from the r=1 uni-
modal solution �pure black shading� to the bimodal solution
with r�1. Choices of �b ,m� in the left half of the plot typi-
cally result in the majority of synapses being potentiated. As
the synaptic depression parameter b increases, so do the frac-
tion of depressed synapses as indicated by continuously di-
minishing values of r �lighter shading�. For sufficiently
strong depression, b, all synapses become depressed, result-
ing once more in a unimodal solution, but with r=0 �pure
white shading�. Part of this boundary can be seen as the
black line in the top right corner of the plot.

There is generally fair agreement between the distribution
predicted from theory �Eq. �16�� and that obtained by simu-
lation. Comparative examples of the full distribution,
P�w , w̄�, are shown in Figs. 7�b�–7�g� for the six points
�b ,m� marked in Fig. 7�a� �and used in Figs. 5�b�–5�g� for
the small � limit�. The histograms give the results of simu-
lations, while the lines give the results of the theory. The
transition from the unimodal r=1, through the bimodal
0�r�1, to the unimodal r=0 solutions is apparent in these
figures as the degree of synaptic depression, b, increases.

For intermediate values of � lying between the small and
large � limit, the corresponding limiting theories described
above provide indications about the number and properties
of the solution. The value of r for the synaptic distribution in
the intermediate � regime typically appears to be the nearest
consistent rational approximation to r as predicted by the
large � theory. For example, if a value of r=0.7 results from

the large � theory in a case with M =4 subgroups, then the
nearest consistent rational approximation is r=3/4=0.75.
However, this is an observation rather than a consequence of
the theory. Furthermore, the theory does not indicate which
values of � can be considered intermediate in this sense. A
theory that applies in this regime may be possible by resort-
ing to a higher-dimensional Fokker-Planck equation �equal to
the number of subgroups�, but since the derivation appears
formidable and the resulting equation is unlikely to be either
analytically solvable or computationally tractable �for M
much greater than 3�, this approach is not pursued here.

C. Effect of input parameters

Thus far we have considered the effect of the learning
parameters b, m, and � while keeping c, M, and �in fixed.
The effect of these input parameters on learning is now de-
scribed.

1. Effects when cÊM

Inspecting the expressions for A�wi , w̄� �Eq. �8�� and
B�wi , w̄� �Eq. �15��, it is seen that the parameters M and c
appear only as a ratio, suggesting that input with a different
number of subgroups, M, but the same ratio will exhibit the
same behavior. While this is true in the large � limit, it does
not hold in the small and intermediate � regimes. This is
because of the implicit dependence on M in Eq. �12�,
through the allowable values of r=0,1 /M ,2 /M , . . . ,
�M −1� /M. This is illustrated in Fig. 8 for the case c /M
=1/6, of which our standard M =3, c=1/2 case is an ex-
ample. The plot shows bifurcation diagrams in the �b ,m�
plane and small � limit for the six possible values of M =1,
2, 3, 4, 5, and 6 �corresponding to c=1/6, 1/3, 1/2, 2/3, 5/6,
and 1�. Since the correlation c�1, then M can be no larger
than 6 since c /M =1/6. In Fig. 8, the diagram with M =3 and
c=1/2 is identical to Fig. 5�a� and readers may refer to the
explanation of this latter figure to help interpret the schema
for the present figure. From the series of diagrams, it is clear
that, although there are similarities between them, they are
all distinct in detail. There is an increase in complexity of the
diagrams as M increases due to the greater number of allow-
able r values, from r� �0,1	 in the first diagram to
r� �0,1 /6 , . . . ,5 /6 ,1	 in the final diagram. The following
points about each plot should be noted. �i� For any permiss-
able ratio r=0,1 /M ,2 /M , . . . , �M −1� /M ,1, there is a re-
gion of the �b ,m� plane within which a stable solution with
this ratio exists, termed the “stable-solution-region.” �ii�
Such regions show a progression from right to left across the
plane as r increases in the following manner. For any two
permissable ratios, the greater one will have at least part of
its stable-solution region to the left of the other’s. Con-
versely, the lesser ratio will have at least part of its stable-
solution region to the right of the other’s. �iii� For bimodal
ratios �0�r�1�, there is always a partial overlap between
their stable-solution regions. Further, there is always a region
of the �b ,m� plane �albeit possibly a very small one� in
which stable solutions exist for all permissable bimodal ra-
tios �0�r�1� and one unimodal ratio �r=0 or 1�. �iv� The

FIG. 7. Predictions of the large learning rate theory for the same
parameters as used in Fig. 5 �but with a large value of �=3
�10−2 s−1 instead of the small � limit of Fig. 5�. �a� A bifurcation
diagram showing the ratio of potentiated synapses, r, in gray scale
�colorbar� as a function of �b ,m�. �b�–�g� Comparison of the distri-
butions P�w , w̄� predicted by the theory �Eq. �16�, solid lines� to
those obtained from simulations �histograms� for six values of b �as
marked� and m=3.0. These are the same six points used in Figs.
5�b�–5�g�, and they are also marked on part �a� of the present figure.
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stable-solution region for a given ratio, r, is the same regard-
less of the value of M �i.e., regardless of which plot it ap-
pears in�. For example, the r=0 and 1 regions are the same in
every plot, as are the r=1/3 and 2/3 regions in the M =3 and
6 plots.

In contrast to the above variation with M for small �,
when � is large the unique, stable synaptic distribution is the
same for a given ratio, c /M, independent of the particular
value of M. Thus the example given in Fig. 7 for M =3 and
c=1/2 remains unaltered for any of the other five possible
values of M that can conform to this ratio c /M =1/6 �i.e.,
M =1, 2, 4, 5, and 6�.

2. Effect of c /M

As the ratio c /M decreases, the region of
�b ,m�-parameter space capable of supporting bimodal distri-
butions diminishes, so that for small values of c /M both b
and m must be very finely tuned in order for synaptic struc-
ture to emerge from the learning process. This region can be
defined from Eq. �9� by noting that Mw̄ /c must lie between
the local minima and the local maxima of the function
w /F�w� �shown in Fig. 2�. These two local stationary points
of w /F�w� define the minimum and maximum values of w−

and w+ that are consistent with bimodal distributions, de-
noted w−

min ,w−
max,w+

min, and w+
max, respectively �see Fig. 2�.

Then, as shown in the Appendix B, the following constraints
are necessary for a bimodal distribution:

F�w−
min� �

c

M
� F�w+

max� . �19�

Equality in these constraints requires the unimodal limits as
r→0 for the lower constraint and r→1 for the upper
constraint. Thus constraints are outer bounds that are
never met in practice for any permissible value of
r=1/M ,2 /M , . . . , �M −1� /M. Constraints that are sufficient
for a bimodal distribution can be obtained from the condition
that the unimodal solution is unstable �see Appendix B�,

F�w−
max� �

c

M
� F�w+

min� . �20�

These constraints assume that the conditions �i�–�iii� in Sec.
III A on F�w� apply. Consequently, they are stronger than
these conditions and they also constrain c /M. These con-
straints are plotted in Fig. 9in the �b ,m� plane for six values
of c /M =1/2, 1/4, 1/8, 1/16, 1/32, and 0. Note that c /M is
bounded above by 1 and that the maximum value consistent
with a bimodal distribution is c /M =1/2. Apart from the first
and last plot, each plot has four curves in addition to the two
straight parallel lines depicting the non-negativity constants
F�0��0 and f−�0��0. The region of the �b ,m� plane that

FIG. 8. �Color online� Bifurcation diagrams in the �b ,m� plane in the small � limit for M =1 through M =6 subgroups and with the value
of the correlation c chosen in each case so that the ratio c /M =1/6 is constant throughout. In each bifurcation diagram, the number of distinct
solutions in a region of �b ,m� parameter space is given by the degree of gray shade, with the lightest corresponding to one solution and the
darkest �seen only in the M =6 diagram� corresponding to six solutions. Borders between these regions are delineated by lines �color online�
that are marked by the value of the ratio r of the solution that loses stability or existence at this border �so the solution is stable and exists
on the darker side of the line�. For the M =1, c=1/6 diagram no bifurcations take place, but there is a transition from the unimodal r=0
distribution to the unimodal r=1 distribution as the value of w̄ passes through q from below. This transition has been marked with a dotted
line. A constant ratio, c /M, leaves the drift A�wi , w̄� �Eq. �8�� and diffusion B�wi , w̄� �Eq. �15�� invariant under changes in M and c.
Nevertheless, it is clear from the plots that the bifurcation diagrams change as M and c change, despite the constant ratio, c /M �see text for
explanation�.
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satisfies the necessity constraints �Eq. �19�, light and dark
shade� lies between the left- and rightmost curves �solid
lines�. The region that satisfies the sufficiency constraints
�Eq. �20�, dark shade� lies between the innermost curves
�dashed lines�. In the final diagram in Fig. 9, where c /M
=0 �i.e., M =� or c=0�, these regions vanish so that there are
no values of �b ,m� consistent with a bimodal distribution.
For finite values of c /M, these regions appear and grow as
c /M increases. �In the first plot, where c /M =1/2, the curve
corresponding to one of the necessity constraints lies to the
right of the visible portion of the �b ,m� plane.�

3. Effect of the input rate

The effect of the input rate, �in, is minor for the range of
neural firing rates observed in the cortex �1–100 Hz� given
the experimental values reported for �+=17 ms and
�−=34 ms �3�.

The main effect of �in appears through the � symbols in
Eq. �8� for the drift and Eq. �15� for the diffusion. It is useful
to consider the low and high �in limits. When �in�±�1, we
have �±→�in�± and we recover the model without any input
restrictions for input-output interactions in STDP. This model
behaves in a qualitatively similar fashion to the input re-
stricted model examined in this paper with moderate �in. The
drift function becomes

A�w,w̄� = ��in���in�+f+�w� − �in�−f−�w��w̄ +
c

M
f+�w�w� .

�21�

There will be a greater tendency for the term �c /M�f+�w�w
to break symmetry because of its relatively large magnitude

compared to the other term when �in�±�1. For the values of
�± measured in the cortex, this limit would only be encoun-
tered when neurons are firing at their background rate of a
few hertz.

In the opposite limit, in which �in�±
1, �±→1. In this
case, the symmetry breaking term �1−�+��c /M�f+�w�w van-
ishes and

A�w,w̄� = ��in�f+�w� − f−�w��w̄ . �22�

Consequently, there can be no bimodal distributions. The sta-
tionary distribution has all the weights at exactly one value
w0 given by f+�w0�= f−�w0�, since the diffusion

B�w,w̄� = �2�in�f+�w� − f−�w��2 � �1 + 2�w̄ −
c

M
w��w̄

�23�

also vanishes at this point. Fortunately, this undesirable be-
havior only occurs at firing rates of more than several hun-
dred hertz, which is outside the normal operating range
found in the cortex.

For neural firing rates above background rates but still
observed in the cortex �20–100 Hz�, there are considerable
and overlapping regions of �b ,m� parameter space that sup-
port bimodal distributions. The detailed variation in these
parameter regions as �in varies within the cortical operational
range is complicated and is not investigated any further here.

IV. DISCUSSION AND CONCLUSION

In this paper, we have described the conditions that permit
the formation of synaptic structure through stable and com-
petitive STDP when inputs consist of correlated synaptic
subgroups. This has been done in general by specifying the
conditions �i�–�iii� in Sec. III A that the potentiation and de-
pression functions, f+ and f−, must satisfy for the emergence
of bimodal distributions to be possible during learning. It has
also been done in detail by analyzing the role of both input
and plasticity parameters in determining the structure of the
synaptic distributions that can emerge from learning, for the
particular choice of f+ and f− given in Eq. �10�. We will now
summarize the main findings and discuss them with refer-
ence to previous work on STDP.

The key aspect of the STDP models considered here is
that they are both competitive and stable. This may be an
important consequence of the weight dependence in STDP
that is observed experimentally �3�. Much previous work on
STDP has considered rules that are either competitive �e.g.,
the rule with “additive” potentiation and depression�
�1,8,11–15� or stable �e.g., the rule with “additive” potentia-
tion and “multiplicative” depression� �16,17�. The model
proposed by Gütig et al. �18� interpolated continuously be-
tween the “additive” and “multiplicative” models and was
the first to exhibit both competition and stability. In condi-
tions �i�–�iii� in Sec. III A we have given general conditions
for the kind of models that exhibit both these properties.

One new, and for us surprising, result is the existence of
multiple stable synaptic distributions when the learning rate
is sufficiently small. In this case, the particular distribution

FIG. 9. The necessary and sufficient constraints for the exis-
tence of a bimodal solution �as given by Eqs. �19� and �20�, respec-
tively� are plotted in the �b ,m� plane for decreasing choices of the
ratio c /M. The region corresponding to sufficiency is shown in dark
shade while the region corresponding to necessity is shown in light
and dark shade. In the first plot, where c /M =1/2, the curve corre-
sponding to one of the necessity constraints lies to the right of the
visible portion of the �b ,m� plane. In the final plot, where c /M =0,
these regions vanish so that there are no values of �b ,m� consistent
with a bimodal distribution. �in ,a, and q are as in previous figures.
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that emerges depends on the initial condition of the weights
and the particular stochastic realization of the individual
weight changes. These alternative possible distributions can
be very different from each other, for example a unimodal
distribution with the weights of all subgroups depressed �r
=0� versus a bimodal distribution with the weights of half
the subgroups potentiated and the remaining half depressed
�r=1/2�. In general the number of alternative distributions
can be very numerous but will be less than the number of
subgroups M. The existence of multiple stable distributions
in the small � limit is common to all STDP models that are
both competitive and stable �at least when the inputs consist
of correlated subgroups to a Poisson linear neuron as consid-
ered here�. This is due to the multiple values of r giving rise
to different versions of Eq. �12�. For instance, multiplicity
also occurs for the model of Gütig et al. �18�. When the
model is competitive, but not stable, as in the “additive”
model, a related multiplicity of synaptic structure emerges.
For example, in the “additive” model, weights evolve along
the eigenvector of �A�wi� /�wj whose eigenvalue has the
greatest real part. It turns out that this eigenvalue has very
high multiplicity and thus the eigenspace through which the
weights evolve has a correspondingly high dimension giving
a large number of possible weight configurations. In contrast,
for STDP models that are stable, but not competitive, there is
usually only one stable distribution, which is unimodal �16�.

In contrast to the multiplicity of solutions and values of r
typically seen at low learning rates, at higher rates there is
usually a unique value of r. For very high rates, the synaptic
structure is not stable because large stochastic fluctuations in
the weights cause potentiated and depressed subgroups to
spontaneously flip places. This results in neurons that do not
have consistent response properties over time. For interme-
diate learning rates, a unique and stable synaptic structure
typically emerges. In this case, the value of r is analogous to
the sparseness of coding in a purely feed forward network in
which all the neurons receive the same correlated subgroup
input as specified here. The primary determinant of r is the
strength of depression compared to potentiation, as param-
etrized through b and m �see, for example, Fig. 7�. Empiri-
cally the value of r for synaptic distributions in the interme-
diate � regime typically appears to be the nearest consistent
rational approximation to r as predicted by the large �
theory.

Finally the role of the input parameters M, c, and �in was
also considered �in Sec. III C�. An important parameter is
c /M: the subgroup correlation divided by the number of sub-
groups. This quantity plays an important role in determining
the robustness with which a subgroup structure forms on the
synapses during learning. When c /M is very small, the learn-
ing parameters b and m must be very finely tuned in order for
bimodal distributions to form �see, e.g., Fig. 9 with c /M
=1/32�. This is intuitively correct since it corresponds to a
situation of very weak correlation or a very large number of
subgroups �or both�.
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APPENDIX A: DERIVATION OF THE DRIFT
AND DIFFUSION FUNCTIONS

The definitions of A�wi , w̄� �Eq. �6�� and B�wi , w̄� �Eq.
�14�� require that we identify small weight changes, 
wi,
independent of other independent weight changes. These are
not congruent with the individual contributions, �wi, de-
scribed by Eq. �1�, because these latter contributions will be
correlated whenever they share the same input times, tin, de-
spite having independent output times, tout. However, for the
input restricted model considered here, the sum total of all
individual contributions during a single input interspike in-
terval represents an independent contribution, 
wi, since no
input-output interactions occur outside this interval. Possible
contributions during a typical interval are illustrated in Fig.
1. The first possible contribution is at the start of the interval
at time T0=��0, and occurs if the input from synapse i �and
possibly inputs from other synapses in its subgroup� pro-
duces an output spike. All further inputs during this interval
occurring at consecutive times Tn�0 cannot involve synapse
i until this synapse again has an input at time Tin which
terminates the interval. Thus


wi = ��f+�wi� − f−�wi�e−Tin/�−���S0� + �

n=1

�

�f+�wi�e−Tn/�+

− f−�wi�e−�Tin−Tn�/�−���Sn�H�Tin − Tn� . �A1�

Here the Heaviside function H�Tin−Tn� ensures that the con-
tribution is counted if and only if the time Tn falls inside the
input interspike interval, while the decision function ��Sn�
ensures that the contribution is counted if and only if the
event Sn=“The input spike�s� at time Tn caused an output
spike” is true,

��S� = �1 if S is true,

0 otherwise.
� �A2�

These independent contributions must be integrated in Eqs.
�6� and �14� to find A�wi , w̄� and B�wi , w̄�, respectively, ac-
cording to the conditional probability density Q�
wi �wi , w̄�.
This density is defined by �i� the arrival of inputs in Poisson
spike trains as described in Sec. II B and �ii� the consequent
probability that they will produce an output spike, as given
by Eq. �4�. We address each of these factors in turn. First, the
input spike trains to the neuron can be partitioned into the
events in which synapse i has an input and those in which it
does not. Since all input spike times are described by homo-
geneous Poisson processes, these two disjoint classes of in-
put events are given by independent Poisson processes with
rates �i for those in which i participates, and �o for those in
which it does not. For inputs consisting of M correlated sub-
groups, recall that events arrive at synapse i according to
independent and correlated Poisson input streams. Let Ij and
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Cj denote independent and correlated events on synapse j,
respectively. Let sj be the event in which there is an input
spike on synapse j, and s̄ j be the event that there is not.
Define ��E� to be the rate at which a given event E occurs
and P�E� be the probability of that event. Then according to
the definitions �Sec. II B� we have ��Ij�=��Cj�=�in,
P�sj � Ij�=1−�c, and P�sj �Cj�=�c for all synapses j. Now �i

contains contributions �in the order in which they appear
below� from its own independent events and from correlated
events of its own subgroup, with the condition that synapse i
participates in both event types. Similarly �o contains contri-
butions from synapse i’s independent events and from corre-
lated events of i’s subgroup, provided that synapse i does not
participate in either event type, as well as contributions from
independent events of other synapses and correlated events
of other subgroups. Thus

�i = ��Ii�P�si�Ii� + ��Ci�P�si�Ci� = �in�1 − �c� + �in
�c = �in,

�A3�

�o = ��Ii�P�s̄i�Ii� + ��Ci�P�s̄i�Ci� + 

j�i

��Ij�P�s̄i�Ij�

+ 

Gk�Gi

��Ck�P�s̄i�Ck�

= �in
�c + �in�1 − �c� + �N − 1��in + �M − 1��in

= �M + N − 1��in. �A4�

In the calculation of �o, note that an independent event in
which the synapses cannot participate has zero probability of
causing an output spike. This is taken into account in the
second part of the calculation, in which the consequent prob-
ability of an output spike is also considered on the basis of
whether synapse i participated or not. The probability of an
output spike given an input event in which synapse i partici-
pated, Pi�S�, contains the same contributions from both cor-
related and independent events listed above for �i and is
given by

P�S�si� = P�S�Ii,si�P�Ii�si� + P�S�Ci,si�P�Ci�si� . �A5�

Now denote a partition of subgroup Gi into those synapses
that participate and those that do not by �� , �̄	. Then

P�S�Ci,si� = 

��,�̄	

P�s�, s̄�̄�Ci,si�

k��

wk

N

= 

j�Gi

wj

N 

��,�̄	:j��

P�s�, s̄�̄�Ci,si� = 

j�Gi

P�sj�Ci,si�
wj

N

= �c 

j�Gi,j�i

wj

N
+

wi

N
=

�c

M
ŵi +

1 − �c

N
wi. �A6�

Then returning to Eq. �A5� we obtain

Pi�S� =
wi

N
�1 − �c� + ��c

M
ŵi +

1 − �c

N
wi��c

=
c

M
ŵi +

1 − c

N
wi. �A7�

The corresponding probability given that i did not participate
contains the same contributions as previously described for
�o. It is

Po�S� = P�S�s̄i� = P�S�Ii, s̄i�P�Ii�si� + P�S�Ci, s̄i�P�Ci�si�

+ 

j�i

P�S�Ij�P�Ij� + 

Gk�Gi

P�S�Ck�P�Ck�

= 0� �c

M + N − 1
� + ��cŵi

M
−

�cwi

N
�� 1 − �c

M + N − 1
�

+ 

j�i

� �1 − �c�wj

N
�� 1

M + N − 1
� + 


Gk�Gi

��cŵk

M
�

�� 1

M + N − 1
� =

1

M + N − 1
�w̄ −

c

M
ŵi −

1 − c

N
wi� .

�A8�

In the above, several of the probabilities have been derived
in a fashion similar to that of Eq. �A6�. The �normalized�
conditional probability density may now be expressed as

� �d
wi�Q�
wi�wi,w̄�

= �i�
0

�

dTinp�i
�Tin��0�

0

�

dT1p�o
�T1��1

��
T1

�

dT2p�o
�T2 − T1��2 ¯

��
Tk−1

�

dTkp�o
�Tk − Tk−1��k ¯ , �A9�

where p��T��� exp�−�T� describes an exponential distribu-
tion, and the bivariate distributions for the existence of the
output spike at T0 or Tn for n�N are given by

�0 � Pi�S0���S0� + �1 − Pi�S0����S0̄� , �A10�

�n � Po�Sn���Sn� + �1 − Po�Sn����Sn̄� , �A11�

respectively �the terms with ��S̄n� vanish when the integral is
performed since �wi=0 in this case�. The first integral in Eq.
�A9� describes the distribution of synapses i’s input interval,
while the remaining integrals describe the distribution of
consecutive input events occurring after the input spike on
synapse i at t=0 �see Fig. 1�. In the calculation of the change
of weight, Eq. �A1�, the Heaviside step function cuts off the
Tn integral at Tin. Consequently, in any explicit calculation
the higher Tk integrals give a multiplicative factor of 1 and
all the Tk integrals for k�n are cut off at Tin.

Using Eqs. �A1� and �A9�, A�wi , w̄� and B�wi , w̄� can be
evaluated from their definitions Eqs. �6� and �14�, respec-
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tively. The nested integrals are performed using Laplace
transforms as given in �17�. The results are

A�wi,w̄� = ��i��Pi�S� + �1,0
o Po�S��f+�wi� − ��0,1

i Pi�S�

+ �0,1
o Po�S��f−�wi�	 , �A12�

B�wi,w̄� = �2�i��1 + 2�1,0
o Po�S���Pi�S� + �2,0

o Po�S��f+
2�wi�

− 2�1 + ��0,0
o + �1,1

o �Po�S����0,1
i Pi�S�

+ �1,0
i �0,1

o Po�S��f+�wi�f−�wi� + �1 + 2�0,1
o Po�S��

���0,2
i Pi�S� + �0,2

o Po�S��f−
2�wi�	 , �A13�

where ��,�
u =�u / ��i+� /�++� /�−�.

APPENDIX B: CONDITIONS FOR THE EXISTENCE
OF BIMODAL DISTRIBUTIONS

The necessary conditions ��i�–�iii�� in Sec. III A for func-
tions F associated with bimodal distributions can be derived
as follows. �i� F��w��0 "w�D. F�w� must be monotone
for all positive w, otherwise the homogeneous solution given
by F�w0�=c /M will have more than one solution for some
choice of c /M, which contradicts our assumptions. Further,
F��w� must be positive for w�0, since if it were negative
there would only be one solution to Eq. �9� for any choice of
c /Mw̄, which is also a contradiction. Notice also that the
monotonicity of F�w� is enough to ensure that symmetry
breaking never occurs within subgroups. This follows from a
rearrangement of Eq. �9� to give F�wi

*�= �cŵi� / �Mw̄�, where
we have retained the original average weight over the sub-
group ŵias it appears in Eq. �8�. Using the fact that the right-
hand side of this expression is the same for all members of a
subgroup and that F�w� is monotone, we find that wj

*=wi
* for

any synapses j and i that are members of the same subgroup.
This in turn implies the absence of symmetry breaking
within subgroups. �ii� F�0��0, since otherwise there would
be no positive homogeneous solution to F�w0�=c /M for suf-
ficiently small choices of c /M. �iii� $wf �D :F��wf�=0 and
F��wf��0. Assume two stable fixed points w− and w+ and
one unstable fixed point w0 such that w−�w0�w+. Notice
that the drift may be written as A�w , w̄�=��inf+�w�w̄�1
−�+��−F�w�+cw /Mw̄�. A stable fixed point w* requires that
A��w*��0, while A��w*��0 implies an unstable fixed point.
Thus we must have F��w±��c /Mw̄ and F��w0��c /Mw̄.
Since F�w� is smooth �recall f+�w� and f−�w� are smooth and
positive�, this implies that F��w� has a local minimum be-
tween w− and w+, i.e., $wf �0 such that F��wf�=0 and
F��wf��0as required.

The inequalities giving necessary �Eq. �19�� and sufficient
�Eq. �20�� conditions for the existence of bimodal solutions
in terms of the model parameters can be found as follows.
The existence of bimodal solutions implies that Eq. �9� has
multiple nonidentical solutions, which we observe from Fig.
2 requires that Mw̄ /c lie between the local minima and the
local maxima of w /F�w� �the existence of which are guaran-
teed by the conditions on F�w��. Thus

w−
max

F�w−
max�

�
Mw̄

c
�

w+
min

F�w+
min�

, �B1�

where w−
max and w+

min are defined in Fig. 2. By the definitions
of w−

min and w+
max �see Fig. 2�, we also have

w+
max

F�w+
max�

�
Mw̄

c
�

w−
min

F�w−
min�

. �B2�

The necessary bounds �Eq. �19�� follow since we must al-
ways have w−

min� w̄�w+
max for bimodal solutions. The suffi-

cient bounds �Eq. �20�� arise because the homogeneous so-
lution is always unstable whenever w−

max�w0� w̄�w+
min in

Eq. �B1� �implying the existence of a stable bimodal solu-
tion�. This follows because w /F�w� is positive and has posi-
tive slope in this region, which implies F��w��F�w� /w for
w�0. Thus at the fixed point, where F�w*� /w*=c /Mw̄, we
have A��w*�=��inf+�w�w̄�1−�+��−F��w*�+c /Mw̄��0,
which implies instability.

APPENDIX C: GAUSSIAN APPROXIMATION

To approximate P�w , w̄� �Eq. �16�� as the sum of Gaussian
distributions centered on the modes w+ and w−, one expands
��w , w̄� �Eq. �17�� as a Taylor polynomial around each mode
to second order. This gives

P�w,w̄� � N 

�=+,−

� − exp�2��w�,w̄�	
A��w�,w̄�B�w�,w̄�

�� 1

�2���
2

exp�−
�w − w��2

2��
2 �� , �C1�

where the variance about a mode, �� �+,−	, is ��
2 �

−B�w� , w̄� /2A��w� , w̄�. Using this approximation, Eq. �18�
becomes

w̄ = �

�

w��−
exp�2��w�,w̄�	

A��w�,w̄�B�w�,w̄��
� �


�

�−
exp�2��w�,w̄�	

A��w�,w̄�B�w�,w̄��−1

, �C2�

where the modes w� should be thought of as implicit func-
tions of w̄ which can be found as the real positive roots of
A�w , w̄� as given by Eq. �8�. After solving Eq. �C2� for w̄, it
can be substituted into Eq. �16� to obtain the distribution if
required, or used as an initial approximation to solve the full
theory �Eq. �18��. One can also estimate the ratio of potenti-
ated synapses, r, from the Gaussian approximation as

r = ��−
exp�2��w+,w̄�	

A��w+,w̄�B�w+,w̄�
�

� �

�

�−
exp�2��w�,w̄�	

A��w�,w̄�B�w�,w̄��−1

. �C3�
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